Degeneracy in model selection for SVMs with radial Gaussian kernel
نویسنده
چکیده
We consider the model selection problem for support vector machines applied to binary classification. As the data generating process is unknown, we have to rely on heuristics as model section criteria. In this study, we analyze the behavior of two criteria, radius margin quotient and kernel polarization, applied to SVMs with radial Gaussian kernel. We proof necessary and sufficient conditions for local optima at the boundary of the kernel parameter space in the limit of arbitrarily narrow kernels. The theorems show that multi-modality of the model selection objectives can arise due to insignificant properties of the training dataset.
منابع مشابه
Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel
Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyperparameters: the penalty parameter C and the kernel width sigma. This letter analyzes the behavior of the SVM classifier when these hyperparameters take very small or very large values. Our results help in understanding the hyperparameter spac...
متن کاملBag Classification Using Support Vector Machines
This paper describes the design of multi-category support vector machines (SVMs) for classification of bags. To train and test the SVMs a collection of 120 images of different types of bags were used (backpacks, small shoulder bags, plastic flexible bags, and small briefcases). Tests were conducted to establish the best polynomial and Gaussian RBF (radial basis function) kernels. As it is well ...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملAppearance-based gender classification with Gaussian processes
This paper concerns the gender classification task of discriminating between images of faces of men and women from face images. In appearance-based approaches, the initial images are preprocessed (e.g. normalized) and input into classifiers. Recently, support vector machines (SVMs) which are popular kernel classifiers have been applied to gender classification and have shown excellent performan...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کامل